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Notation
We will use the convention followed in the book; specifically:

- Random vectors are set in boldface sans serif type, as x made up of scalar components xi.

- Vectors (deterministic) are denoted by lower case letters in boldface type, as the vector x made up of scalar
components xi.

- col(x1,x2, · · ·xN ) is a column vector formed by vertically stacking column vectors xi’s, 1 ≤ i ≤ N .
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Chapter 1

A Brief Note On Controllable Canonical Form

They represent the same system (I/O
behavior, internal stability property,
identical modes, etc.) but each shows a
different representation of the system.

Why is Controllable Canonical Form Useful?

Consider the state-space form of a linear dynamical system ẋ = Ax + bu (SISO model). Transform it into the
controllable canonical form using T by defining the state x̂ = Tx: ˙̂x = Âx̂+ b̂u.

Using the input u = −kT x̂, we can easily design the feedback gain kT such that the eigenvalues of the closed-loop
system ˙̂x = (Â− b̂kT )x̂ are placed at desired locations on the complex plane.

Applying this input to the system represented by ẋ = Ax+ bu yields:

ẋ = Ax+ b(−kT x̂) = (A− bkTT )x = Aclx where

{
Acl = A− bkTT

Âcl = Â− b̂kT

But eigenvalues of Acl and Âcl are identical!

Âcl = TAT−1 − TbkT = TAT−1 − TbkTTT−1 = T{A− bkTT}T−1 = TAclT
−1

Therefore, Âcl and Acl are similar matrices⇐⇒ σ(Âcl) = σ(Acl). As a result, applying the control u = −kTTx places
the eigenvalues of Acl at desired locations.

Figure 1: Example
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Problem 2.1

G(s) =
1s3 + 3s2 + 5s+ 8

s4 + 7s3 + 14s2 + 8s+ 0

a =


a0
a1
a2
a3

 =


0
8
14
7



c =


c0
c1
c2
c3

 =


8
5
3
1



Acc =

 0 I

−aT

 =


0 1 0 0
0 0 1 0
0 0 0 1
0 −8 −17 −7



bcc =


0
0
0
1

 cTcc =
[
8 5 3 1

]

c3 c2 c1 c0

a3 a2 a1 a0

Figure 2: Example

Observable Canonical Form:

Aoc =


0 0 0 0
1 0 0 −8
0 1 0 −14
0 0 1 −7

 boc =


8
5
3
1


cToc =

[
0 0 0 1

]

Figure 3: Example
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Observable Companion Form:

Aocmp =


0 1 0 0
0 0 1 0
0 0 0 1
0 −8 −14 −7

 bocmp =


1
−4
19
−77


cTocmp =

[
1 0 0 0

]

Figure 4: Example
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Part a) How to interpret the singularity of A?

• A has a zero eigenvalue: a pole at the origin

• A has an eigenvector corresponding to this zero eigenvalue: v = Null(A)

• Since Real{λ(A)} < 0 for all other eigenvalues λ, system states are absorbed to v = Null(A)

• After modal decomposition, the component lying on v remains constant.

• Since there is only 1 pole at the origin:

1. System is stable in the sense of Lyapunov.

2. System is NOT BIBO stable.

System can be decomposed in the way shown in the above figure. It is now evident that applying a unit
step signal at the input u(t) = unit step (BI) results in unbounded output.

3. System is type 1: the closed loop system is able to track constant references inputs.

Part b)

G(s) =
1

s
+
−5/3
s+ 1

+
1/2

s+ 2
+

7/6

s+ 4

A =


0
−1

−2
−4

 b =


1
1
1
1


cT =

[
1 −5

3
1
2

7
6

]

Figure 5: Example

Part c) Yes!
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Problem 2.2

G(s) =
10s+ 40

s3 + 3s2 + 2s+ 0

a =

a0a1
a2

 =

02
3



c =

c0c1
c2

 =

4010
0


Acc =

 0 I

−aT

 =

0 1 0
0 0 1
0 −2 −3



bcc =

00
1

 cTcc =
[
40 10 0

]
c1 c0

a2 a1 a0

ρ(s) = s3 + 3s2 + 2s = s(s2 + 3s+ 2) = s(s+ 2)(s+ 1)⇒


s1 = 0

s2 = −1
s3 = −2

−→ T =
[
v1 v2 v3

]

A(0)v1 =

0 1 0
0 0 1
0 −2 −3

v1 = 0

⇒ v1 =

10
0


A(−1)v2 =

1 1 0
0 1 1
0 −2 −2

v2 = 0

⇒ v2 =

 1
−1
1


A(−2)v3 =

2 1 0
0 2 1
0 −2 −1

v3 = 0

⇒ v3 =

 1
−2
4



⇒ T =
[
v1 v2 v3

]
=

1 1 1
0 −1 −2
0 1 4

 Which is the same as Vandermonde Matrix

Â = PAP−1 b̂ = Pb : set P ≜ T−1

Using x̂ = Px : ˙̂x =

0 −1
−2

 x̂+

 1
2
−1
1
2

u

y =
[
40 30 20

]
x̂

To make b̂←

11
1

 : x̃ =

 2
−1

2


︸ ︷︷ ︸

P̃

x̂

˙̃x =

0 −1
−2

 x̃+

11
1

u

y =
[
20 −30 10

]
x̃

Using partial fraction expansion, the factorized transfer function can be expressed as

G(s) =
20

s
+
−30
s+ 1

+
10

s+ 2
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Problem 2.3
Decompose the given transfer function into its factors:

G(s) =
1

s3 + 7s2 + 31s+ 25
=

1/20

s+ 1
+

1
−32−16j

s− (−3 + 4j)
+

1
−32+16j

s− (−3− 4j)

c0

a2 a1 a0

We can now write the modal canonical form as:

A =

−1 −3 + 4j
−3− 4j

 b =

11
1


cT =

[ 1
20

1
−32−16j

1
−32+16j

]
To eliminate complex entries, use the similarity transformation T =

1 0 0
0 1 1
0 j −j

. Let x̂ = Tx, then

Â =

−1 0 0
0 −3 4
0 −4 −3

 b̂ =

12
0


ĉT =

[
1
20

−1
40

1
80

]
Controllable Canonical From:

Acc =

 0 1 0
0 0 1
−25 −31 −7

 bcc =

00
1


cTcc =

[
1 0 0

]
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Problem 2.4

Part a)


ẋ2 = −6x2 + kv1

ẋ1 = −6x1 + x2

v1 = u− 3x1 − x2

=⇒

{
ẋ1 = −6x1 + x2

ẋ2 = −6x2 + ku− 3kx1 − kx2

=⇒

{
ẋ1 = −6x1 + x2

ẋ2 = −3kx1 + (−6− k)x2 + ku

⇒ ẋ =

[
−6 −1
−3k −k − 6

]
x+

[
0
k

]
u

y =
[
1 0 0

]
x

Y (s)

U(s)
=
[
1 0

]
(sI −A)−1

[
0
k

]

Part b)
Simplify the block diagram:

Figure 6: Example

Part c)
This is a 2nd order system whose poles are affected by the change in the gain value k. We can plot the locus of the
poles of the closed loop system as function of k.
For the closed-loop system to be stable, according to Routh-Hurwitz criterion, the following conditions must hold:

c > 0⇒ 9k + 36 > 0 ⇒ k > −4
b > 0⇒ k + 12 > 0 ⇒ k > −12

}
⇒ k > −4

The roots can be obtained as
s1,2 = (−k/2− 6)±

√
k(k − 12)

For 0 < k < 12, the roots appear in complex conjugate pairs.
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−16 −14 −12 −10 −8 −6 −4 −2 0

−5

0

5

k = −4

k = 0k = 12

k =∞

Re{z}

I
m
{z
}

Closed-loop Poles
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Problem 2.5
State-space formulation of the dynamical system is given by

ẋ =

 0 1 0
0 0 1
−a1 −a2 −a3

x+

00
1

u

⇒ Φ(s) = (sI −A)−1 =
1

s3 + a3s2 + a2s+ a1

s2 + a3s+ a2 s+ a3 1
−a1 s2 + a3s s
−a1s −a2s− a1 s2


Appending the output equation y =

[
c1 c2 c3

]
x and matching the resulting state-space model to the controllable

canonical form yields

G(s) =
Y (s)

U(s)
=

c1s
2 + c2s+ c3

s3 + a3s2 + a2s+ a1

The corresponding differential equation is then readily obtained as

...
y + a3ÿ + a2ẏ + a1y = c1ü+ c2u̇+ c3u

Studying the steady-state response of the system to unit impulse, unit step inputes:

(I) U(s) = 1⇒ sY (s) =
s(c1s

2 + c2s+ c3)

s3 + a3s2 + a2s+ a1

(a) if G(s) has a single pole at the origin and all other poles in the open left-half complex plane, then: a1 =

0⇒ sY (s) =
c1s

2 + c2s+ c3
s3 + a3s2 + a2s

⇒ y(∞) = lims→0 sY (s)⇒ y(∞) =
c3
a2

(b) if G(s) is BIBO stable (all poles lie the open left-half complex plane), then: y(∞) = lims→0 sY (s) ⇒
y(∞) = 0

(II) U(s) =
1

s
⇒ sY (s) =

c1s
2 + c2s+ c3

s3 + a3s2 + a2s+ a1
= G(s)

if G(s) is BIBO stable ⇒ y(∞) = lims→0 sY (s)⇒ y(∞) =
c3
a1

The model characterized by the given A and b is in controllable canonical form and thus is automatically controllable:

Mc =
[
b Ab A2b

]
=

 0 0 1
0 1 −a3
1 −a3 −a2 − a23

⇒ det(Mc) = −1⇒ Controllable ✓

Let cT =
[
1 0 0

]
and form the observability matrix:

Mo =

 cT

cTA

cTA2

 =

1 0 0
0 1 0
0 0 1

⇒ det(Mo) = 1⇒ Observable ✓

As you can see, det(Mc) and det(Mo) are both non-zero and independent of the values of a1, a2, a3.
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Problem 2.6

let x ≜

[
v
f

]
, then the state-space equations are:

 v̇ = − b

m
v − 1

m
f +

1

m
u (I)

ḟ = 2kv (II)

Reformulating the dynamical equations in terms of the new state x̂ ≜

[
f

ḟ

]
:

from (II): f̈ = 2k

(
−b
m

v − 1

m
f +

1

m
u

)
= (2k)

(
−b
m

)(
ḟ

2k

)
− 2k

m
f +

2k

m
u

= − b

m
ḟ − 2k

m
f +

2k

m
u

⇒


˙̂x1 =

d

dt
f = ḟ = x̂2

˙̂x2 =
d

dt
ḟ = f̈ = −2k

m
x̂1 −

b

m
x̂2 +

2k

m
u

Output Equations−−−−−−−−−−−→


z1 = v =

1

2k
ḟ =

1

2k
x̂2

z2 = f = x̂1

The new state-space equations are:

˙̂x =

 0 1
−2k
m

−b
m

 x̂+

 0
2k

m

u

z =

0 1

2k

1 0

 x̂

To obtain the transformation T relating these two state vectors, x̂ = Tx, note that
[
f

ḟ

]
=

[
0 1
2k 0

] [
v
f

]
, therefore

T ≜

[
0 1
2k 0

]
.

Using the Laplace transform, we get

X̂2(s)

U(s)
=

2ks

ms2 + bs+ 2k

The form of time response depends on the parameters (whether it is underdamped, overdamped, or critically damped).
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Problem 2.7 
Icmω̇im = Mm +Mint

ėsig = Ssg (ωcmd − ωim + ωd)

Mm =

(
Sc

Ssg

)
Fc(D)esig

Part a)
Using the Laplace Transform:

Icms2ωim(s) = sMi(s) +

(
Sc

Ssg

)
Fc(s)Ssg{ωcmd(s)− ωim(s) + ωd(s)}(

Is2 + ScFc(s)
)
ωim(s) = ScFc(s) (ωcmd(s) + ωd(s)) + sMi(s)

Part b)

Figure 7: Example

Part c)

{
ẋ1 = λ1x2 + λ1v1 + λ1r

ẋ2 = λ2λ3x1 + λ3v2

states: x =
[
esig ωim

]T
disturbances: v =

[
v1 v2

]T
reference input: r = ωcmd

The new state-space equations are:

ẋ =

[
0 −λ1

λ2λ3 0

]
A

x+

[
λ1

0

]
b

r +

[
λ1 0

0 λ3

]
G

[
v1

v2

]
v

Part d)
set r = 0(t)⇒ ẋ = Ax+Gv. We use Laplace transform to obtain

X2(s)

V1(s)
and

X2(s)

V2(s)
and then to analyze the behavior

of the system under the action of disturbances.

X2(s)

V1(s)
=

λ1λ2λ3

s2 + λ1λ2λ3
=

α2

s2 + α2

X2(s)

V2(s)
=

λ3s

s2 + λ1λ2λ3

⇒ Not BIBO stable:
Any disturbance would render the system unstable

14



Problem 2.9
From the block diagram, variables are related as


ẋ1 = x2 + u

ẋ2 = x3 + u

ẋ3 = −6x1 − 11x2 − 6x3

y = x1 + x3

In state-space form:

ẋ =


−6
0
0

−11
0
1

−6
1
0
x+

11
0

u

y =
[

1 0 1
]
x

Compute controllability and observability matrices:

Mc =
[
b Ab A2b

]
=

 1 1 0
1 0 −17
0 −17 96

⇒ Full Rank⇒ Controllable ✓

Mo =

 cT

cTA

cTA2

 =

 1 0 1
−6 −10 −6
36 60 26

⇒ Full Rank⇒ Observable ✓

Obtain the transfer function:

G(s) = cT (sI −A)−1b =
[
1 0 1

] 1

s3 + 6s2 + 11s+ 6

s2 + 6s+ 11 s+ 6 1
−6 s2 + 6s s
−6s −11s− 6 s2

11
0



=
s2 − 10s+ 11

s3 + 6s2 + 11s+ 6
−→

{
Poles: − 1, −2, −3 ⇒ Stable
Zeros: 8.74, 1.25 ⇒ Non-minimum Phase

Find the eigen-decomposition of A: V =

v1 v2 v3[ ]
1 1 1
−1 −2 −3
1 4 9

let T ≜ V −1 =

 3 5/2 1/2
−3 −4 −1
1 3/2 1/2

. Define the new state x̂ ≜ Tx:

˙̂x = TAT−1x̂+ Tbu

= Âx̂+ b̂u

=

−1 −2
−3

 x̂+

11/2−7
5/2

u

15



To make b←

11
1

, define another transformation Q ≜

2/11 −1/7
2/5

 and let x̃ ≜ Qx̂:

˙̃x = QÂQ−1x̃+Qb̂u

=

−1 −2
−3

 x̃+

11
1

u

Combine the two transformations:
x̃ = Qx̂ = QTx = Px : P ≜ QT

{
˙̃x = Ãx̃+ x̃u

y = cTP−1x̃
=⇒

˙̃x =

−1 −2
−3

 x̃+

11
1

u

y =
[
11 −35 25

]
x̃

System response to impulse and unit step:

Y (s) = U(s)G(s) =
U(s)=1

======⇒
impulse

Y (s) =
s2 − 10s+ 11

s3 + 6s2 + 11s+ 6

L−1{·}
=====⇒ y(t) = 11e−t − 35e−2t + 25e−3t

Y (s) = U(s)G(s) =
U(s)= 1

s=====⇒
step

Y (s) =
s2 − 10s+ 11

s(s3 + 6s2 + 11s+ 6)

L−1{·}
=====⇒ y(t) = −11e−t +

35

2
e−2t − 25

3
e−3t +

11

6

16



Problem 2.10
Part a)
Even if we set u1 = 0, the presence of u2 casts the system into controllable canonical form: Controllable . Observability
can be investigated through modal decomposition:

Â =

 −2 −1 1
−1


ĉT =

[
1 0 1

] ←→

It is evident now that y(t) does not in any way sense the change in x2(0): Unobservable .
Part b)
Since x1(t) is unaffected by the input, the system is Uncontrollable . Also, x2(t) is not observed in the output:
Unobservable .

Part c)
The system is both Controllable and Observable .

17



Problem 2.11

W (t0, t) =

∫ t

t0

eA(t0−τ)B(τ)B(τ)T eA
T (t0−τ)dτ ⇒ W (0, t) =

∫ t

0

e−AτB(τ)B(τ)T e−AT τdτ

A =

[
0 ω
−ω 0

]
. Since L{eAt} = (sI −A)−1 ⇒ L{e−At} = (sI +A)−1 ⇒ e−At = L−1{(sI +A)−1}

sI +A =

[
s ω
−ω s

]
⇒ (sI +A)−1 =

1

s2 + ω2

[
s −ω
ω s

]
⇒ e−At =

[
cos(ωτ) − sin(ωτ)
sin(ωτ) cos(ωτ)

]

⇒W (0, t) =

∫ t

0

cos(ωτ) − sin(ωτ)

sin(ωτ) cos(ωτ)

0 0

0 1

 cos(ωτ) sin(ωτ)

− sin(ωτ) cos(ωτ)

 dτ

=

∫ t

0

 sin2(ωτ) − sin(ωτ) cos(ωτ)

− sin(ωτ) cos(ωτ) cos2(ωτ)

 dτ

=

 t

2
− sin(2ωt)

4ω
− 1

2ω
sin2(ωt)

− 1

2ω
sin2(ωt)

t

2
+

sin(2ωt)

4ω



det(W (0, t)) =
1

4ω2

(
(tω)2 − sin2(tω)

)
> 0 ∀t > 0 ⇒ Controllable ✓

Mc =
[
b Ab

]
=

[
0 ω
1 0

]
⇒ det(Mc) = −ω ̸= 0⇒ Controllable ✓

18



Problem 2.15
Part a)

Let Λ ≜ Φ(t1, t0) and define Ψ(t, t1, t0) ≜ Φ(t, t1)Φ(t1, t0) viewed as matrix-valued function of t. Φ(t, t0) satsifies the
following IVP: 

d

dt
Φ(t, t0) = A(t)Φ(t, t0)

Φ(t1, t0) = Λ

This is a linear matrix differential equation with specified initial condition which has a unique solution. Realize that

Ψ(t1, t1, t0) = Φ(t1, t1)Φ(t1, t0) = I Φ(t1, t0) = Λ

Differentiating Ψ(t, t1, t0) with respect to t yields:

d

dt
Ψ(t, t1, t0) = A(t)Φ(t, t1)Φ(t1, t0) = A(t)Ψ(t, t1, t0)

As a result, Ψ(t, t1, t0) satisfies the same IVP:
d

dt
Ψ(t, t1, t0) = A(t)Ψ(t, t1, t0)

Ψ(t1, t1, t0) = Λ

And by uniqueness of the solution, we conclude that Φ(t, t0) = Ψ(t, t1, t0) =⇒ Φ(t, t0) = Φ(t, t1)Φ(t1, t0) for any t,
t0, and t1.

Part b)

Substitute t = t0 in Φ(t, t0) = Φ(t, t1)Φ(t1, t0) to obtain Φ(t0, t0) = I = Φ(t0, t1)Φ(t1, t0) =⇒ Φ(t0, t1) = Φ−1(t1, t0).
Since this is valid for any t0 and t1, Φ(t0, t) = Φ−1(t, t0).
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Problem 2.16
The solution to the state differential equations ẋ(t) = A(t)x(t)+B(t)u(t) is given by x(t) = Φ(t, t0)x(t0)+α(t) where
Φ(t, t0) is unique and satisfies  Φ̇(t, t0) =

d

dt
Φ(t, t0) = A(t)Φ(t, t0)

Φ(t0, t0) = I
(⋆)

Consider the state x̂(t) which is related to x(t) as x̂(t) = Tx(t). The differential equations governing the evolution of
x̂(t) are obtained as: (dropping dependencies on t to simplify notation)

˙̂x = Ṫx+ T (Ax+Bu)

⇒ ˙̂x =
(
Ṫ + TA

)
T−1x̂+ TBu

= Âx̂+ B̂u

The solution to this system of differential equations is expressed as x̂(t) = Φ̂(t, t0)x̂(t0) + α̂(t). Since x(t) =
Φ(t, t0)x(t0) +α(t):

x̂=Tx
====⇒ T−1(t)x̂(t) = Φ(t, t0)T

−1(t0)x̂(t0)+α(t)⇒ x̂(t) = {T (t)Φ(t, t0)T−1(t0)}︸ ︷︷ ︸
Φ̂(t,t0)

x̂(t0)+T (t)α(t) = Φ̂(t, t0)x̂(t0)+α̂(t)

The last equality results from the uniqueness of the solution of differential equations. As such, the two matrices are
related as

Φ̂(t, t0) = T (t)Φ(t, t0)T
−1(t0)

Also, note that Φ̂(t0, t0) = T (t0) Φ(t0, t0)︸ ︷︷ ︸
I

T−1(t0) = I which is consistent with the properties of the state transition

matrix.
To obtain the differential equation satisfied by Φ̂(t0, t0), first, note that

d

dt
(Φ(t, t0)) = Φ̇(t, t0)

from(⋆)
======== A(t)T−1(t)Φ̂(t, t0)T (t0) (⋆⋆)

Next, differentiating the boxed equation above (after isolating Φ(t, t0)):

Φ(t, t0) = T−1(t)Φ̂(t, t0)T (t0)
d
dt (·)===⇒ Φ̇(t, t0) = Ṫ−1(t)Φ̂(t, t0)T (t0) + T−1(t)

˙̂
Φ(t, t0)T (t0)

= A(t)T−1(t)Φ̂(t, t0)T (t0) (from (⋆⋆))

⇒ T−1 ˙̂Φ(t, t0) = T−1Ṫ T−1Φ̂(t, t0) +A(t)T−tΦ̂(t, t0)

⇒ ˙̂
Φ(t, t0) =

(
TAT−1 + Ṫ T−1

)
Φ̂(t, t0)
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Problem 2.18
First, we find the differential equation satisfied by p(t):

xTp = c
d
dt (·)===⇒ ẋTp+ xT ṗ = 0⇒ xTATp+ xT ṗ = 0⇒ xT

(
ATp+ ṗ

)
= 0

Since this must hold for all x(t), then we must have

ṗ = −ATp

Suppose x(t) is the solution of the IVP {ẋ(t) = A(t)x(t);x(t0) = x0}, then define p(t) as a time function such that
the relation xT (t)p(t) = c holds for all t. In particular, xT (t)p(t) = xT (t0)p(t0) = c

ẋ(t) = A(t)x(t)

x(t) = Φ(t, t0)x(t0)

where Φ̇(t, t0) = A(t)Φ(t, t0)


ṗ(t) = −AT (t)p(t)

p(t) = Φ̂(t, t0)p(t0)

where ˙̂
Φ(t, t0) = −AT (t)Φ̂(t, t0)

Proceed as follows:

xT (t)p(t) = xT (t0)p(t0)⇒ xT (t0)Φ
T (t, t0)Φ̂(t, t0)p(t0) = xT (t0)p(t0)

⇒ xT (t0){ΦT (t, t0)Φ̂(t, t0)− I}p(t0) = 0

This must be true for any choice of (x(t0),p(t0)), therefore, we can conclude that ΦT (t, t0)Φ̂(t, t0)− I = 0 and thus

Φ̂(t, t0) = Φ−T (t, t0) (⋆)

There is an alternative way to show this result. Consider the linear differential matrix equation with the specified

initial condition:

{
Ẋ = 0

X(t0) = I

We claim that X(t) ≜ I satisfies this system of equations and thus is the solution for this IVP. Indeed this function

passes through the specified initial condition at time t0: X(t0) = I and also
d

dt
(X(t)) =

d

dt
(I) = 0.

We claim that Y (t) ≜ ΦT (t, t0)Φ̂(t, t0) also satisfies this differential equation:

(1) Y (t0) = ΦT (t0, t0)Φ̂(t0, t0) = (I)(I) = I ✓

(2)
d

dt
Y (t) =

d

dt

(
ΦT (t, t0)Φ̂(t, t0)

)
= Φ̇T Φ̂ + ΦT ˙̂

Φ = ΦTAT Φ̂ + ΦT (−AT )Φ̂ = 0 ✓

Since the solution must be unique, it must be the case that Y (t) ≡ X(t):

ΦT (t, t0)Φ̂(t, t0) = I ⇒ Φ̂(t, t0) = Φ−T (t, t0)

Using the identity (⋆) (note the arrangement of input arguments):

Φ̂T (t, τ) = Φ−1(t, τ)⇒ Φ̂T (t, τ) = Φ(τ, t)
rename
======⇒
variables

Φ̂T (τ, t) = Φ(t, τ)

d

dτ
Φ(t, τ) =

(
d

dτ
Φ̂(τ, t)

)T

=
(
−AT (τ)Φ̂(τ, t)

)T
= −Φ̂T (τ, t)A(τ) = −Φ(t, τ)A(τ)

d

dτ
Φ(t, τ) = −Φ(t, τ)A(τ)

21



Problem 2.19

Let I1 = I2 and define the constants α ≜
I2 − I3

I1
, β ≜

1

I1
and γ ≜

1

I3
. Define the state vector x ≜ [w1 w2 w3]

T , and

the input vector u = [u1 u2 u3]
T . The nonlinear state differential equations are compactly expressed as ẋ = f(x,u):

ẋ =

 αx2x3 + βu1

−αx1x3 + βu2

γu3

 = f(x,u)

The following pair of time functions (x⋆(t),u⋆(t)) is a solution for this system of differential equation: (the nominal
solution presented in the book appears to be erroneous, as it fails to satisfy the differential equations)

x⋆(t) =

 cos(αω0t)
− sin(αω0t)

ω0

 , u⋆(t) =

00
0


This can be verified by checking the validity of

d

dt
x⋆(t) = f(x⋆(t),u⋆(t)).

To find the dynamics of the deviation from this nominal solution, we need to determine the dynamics of the time
function e(t) ≜ x(t)− x⋆(t):

ė(t) = ẋ(t)− ẋ⋆(t) = f(x,u)− f(x⋆,u⋆) = f(e(t) + x⋆(t),u(t))− f(x⋆(t),u⋆(t))

For small deviations of x from x⋆ and u from u⋆:

f(x,u)− f(x⋆,u⋆) ≈ ∂f

∂x

∣∣∣∣∣
x⋆

u⋆

(x− x⋆) +
∂f

∂u

∣∣∣∣∣
x⋆

u⋆

(u− u⋆) = A(t)e(t) +B(t)u(t)

A(t) ≜
∂f

∂x

∣∣∣∣∣
x⋆

u⋆

=

 0 αx3 αx2

−αx3 0 −αx1

0 0 0

∣∣∣∣∣∣
x⋆

u⋆

=

 0 αω0 −α sin(αω0t)
−αω0 0 −α cos(αω0t)
0 0 0



B(t) ≜
∂f

∂u

∣∣∣∣∣
x⋆

u⋆

=

β β
γ


The obtained linearized perturbation equation is a valid approximation for the dynamics of e for small u (around zero)
and small e:

ė = A(t)e+Bu
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Problem 2.20
Define the state variables x1 ≜ c and x2 ≜ ċ. The dynamical system is described as

ẋ =

[
x2

t2x1 − sin(x1)− x3
1x

2
2 + u

]
ẋ = f(t,x, u)

The pair (x⋆(t) = 0, u⋆(t) = 0) is a solution for this system of differential equations. As before,

ė ≈ ∂f

∂x

∣∣∣∣∣
x⋆

u⋆

(x− x⋆) +
∂f

∂u

∣∣∣∣∣
x⋆

u⋆

(u− u⋆) =

[
0 1

t2 − cos(x1)− 3x2
1x

2
2 −2x3

1x2

]∣∣∣∣
x⋆

u⋆

e+

[
0
1

]
u

ė =

[
0 1

t2 − 1 0

]
e+

[
0
1

]
u = A(t)e+ bu

The pair
(
x⋆(t) =

[
t
1

]
, u⋆(t) = sin(t)

)
is also a nominal solution for this dynamical system:

ė =

[
0 1

−2t2 − cos(t) −2t3
]
e+

[
0
1

]
(u− u⋆)

We can set the input u = v + u⋆ to get ė = A(t)e+ bv.
In the equivalent discrete-time model, the input signal to the physical continuous-time process is in the staircase form
(generated by the digital controller and transmitted through the hold device), that is, u(t) = u(ti) for t ∈ [ti, ti+1).
Now the equivalent discrete-time model is given by{

e(tk+1) = Φ(tk+1, tk)e(tk) +
(∫ tk+1

tk
Φ(tk+1, τ)B(τ)dτ

)
u(tk)

y(tk) = [1 0]e(tk)

Observe that y = [ 1 0 ]e = ∆c so that the perturbed output ∆c is obtained in the measurement. But, how to
compute Φ(t, t0) for this time-varying dynamics matrix? In general, it is not possible to derive an explicit form for
Φ(t, t0). However, we can obtain the value of the matrix Φ(t, t0) using numerical integration techniques to any desired
accuracy by numerically solving the following IVP in each sampling interval:{

Φ̇(t, tk) = A(t)Φ(t, tk)

Φ(tk, tk) = I
t ∈ [tk, tk+1]
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Problem 2.21

Figure 8: Example

Plant is assumed to be a continuous-time process whose dynamics is described by ẋ = −x + u. When placed into
the setting depicted above (preceded by a hold device and followed by a sampler), the controller sees a discrete-time
process.
1○−−→ Form equivalent discrete-time model: x1(k + 1) = Âx1(k) + b̂u1(k) where Â = eAT = e−T and b̂ =

∫ T

0
e−τdτ =

(1− e−T ) where T is the sampling period. x1(k + 1) = e−Tx1(k) + (1− e−T )u1(k)

y1(k) = x1(k)

2○−−→ State-space model of the controller:  x2(k + 1) = u2(k)

y2(k) = −
1

T
x2(k) +

1

T
u2(k)

3○−−→ Signal connections in the feedback loop:  u2(k) = r(k)− y1(k)

u1(k) = y2(k)

Assemble the equations to generate the state-space model for the closed-loop system:

x1(k + 1) = e−Tx1(k) + (1− e−T ){− 1

T
x2(k) +

1

T
(r(k)− x1(k))}

=

(
e−T − (1− e−T )

T

)
x1(k)−

1− e−T

T
x2(k) +

1− e−T

T
r(k)

x2(k + 1) = −x1(k) + r(k)

Let a ≜ e−T and b ≜ 1− e−T , then
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x(k + 1) =

[
a− b/T − b/T
−1 0

]
x(k) +

[
b/T
1

]
r(k)

z(k) =
[

1 0
]
x(k)

Eigenvalues of Ad ≜

[
a− b/T − b/T
−1 0

]
are plotted as function of the sampling period T in the following graph. Note

that |λ| < 1 for any chosen T ; The discrete-time closed loop system is stable for any choice of the T :

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

T : Sampling Time

∥λ
∥

Modulus of Eigenvalues

∥λ1∥
∥λ2∥
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Problem 2.22
There is a stable state-space realization for the integration operation ( 1s ): ẋ = u. To implement this operator into
the computer we need to construct a discrete-time dynamical system (a recursive algorithm) that approximates this
differential equation. This falls into the domain of numerical discretization of ODEs and there are lot of techniques
to achieve this: forward Euler, backward Euler, trapezoidal method, Runge-Kutta methods, etc. In the following, we
use the backward Euler method.

ẋ = f(t,x)
discretize
=======⇒ x(n+ 1) = x(n) + hf(t(n+ 1),x(n+ 1))

ẋ = u
discretize
=======⇒ x(n+ 1) = x(n) + hu(n+ 1)

h is the time-step (sampling period). To obtain state-space formulation of x(n+1) = x(n)+hu(n+1), block diagrams
would help. Note that x(n) and u(n) are the inputs/outputs of this system, therefore we use the following symbols to
be consistent with the conventional notations used in control theory.

y(n+ 1) = y(n) + hu(n+ 1)↔ y(k) = y(k − 1) + hu(k)

 x(k + 1) = x(k) + hu(k)

y(k) = x(k) + hu(k)
←−−−−−→

Alternatively, we could use the following equivalent block diagram to obtain another equivalent state-space represen-
tation of this system:

 x(k + 1) = x(k) + u(k)

y(k) = hx(k) + hu(k)
←−−−−−→

In general, for SISO systems, replacing s in the transfer function by
1− z−1

h
results in the backward Euler discretized

model.

Y (s)

U(s)
=

1

s
⇒ Y (z)

U(z)
=

h

1− z−1

⇒ Y (z)− z−1Y (z) = hU(z)

Z−1{·}
=====⇒ y(k) = y(k − 1) + hu(k)

The derivative operator G(s) = s has no state-space realization. Therefore, we need to use our brain to come up with

an algorithm that performs similar operation on sequences. One such algorithm reads y(k) =
1

h
(u(k)− u(k − 1)).

Block-diagram helps in drawing state-space formulation.
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 x(k + 1) = u(k)

y(k) = − 1

h
x(k) +

1

h
u(k)

←−−−−−→
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Problem 2.23
First, we obtain the state-space model of the continuous-time plant:

s+ 3

(s+ 1)(s+ 2)
=

2

s+ 1
+
−1
s+ 2

=====⇒
ẋp =

[
−1

−2

]
xp +

[
1
1

]
up

yp =
[
2 −1

]
xp

Discretize the plant:

Ap ≜ eAh =

[
e−h

e−2h

]

bp ≜
∫ h

0
eAτbdτ =

∫ h

0

[
e−τ

e−2τ

]
dτ =

[
1− e−h

1
2 (1− e−2h)

]
cTp =

[
2 −1

]


====⇒

{
xp(k + 1) = Apxp(k) + bpup(k)

yp(k) = cTp xp(k)

Digital PID controller:

I :

 x1(k + 1) = x1(k) + uc(k)

y1(k) = hx1(k) + huc(k)

D :

 x2(k + 1) = uc(k)

y2(k) = − 1
hx2(k) +

1
huc(k)


xc=

x2

x1


=======⇒



xc(k + 1) =

Ac≜︷ ︸︸ ︷[
0 0

0 1

]
xc(k) +

bc≜︷︸︸︷[
1

1

]
uc(k)

yc(k) =
[
−kd

h hki

]
︸ ︷︷ ︸

cT
c ≜

xc(k) + (
kd
h

+ hki + kp)︸ ︷︷ ︸
dc≜

uc(k)

Form the closed-loop system by connecting signals according to the block-diagram:{
xc(k + 1) = Acxc(k) + bc(r − cTp xp(k))

xp(k + 1) = Apxp(k) + bp{cTc xc(k) + dc(r − cTp xp(k))}

Define the augmented state vector x(k) ≜

[
xc(k)
xp(k)

]
. The dynamics of the closed-loop system is then given by:

x(k + 1) =

[
Ac −bccTp
bpc

T
c Ap − bpdcc

T
p

]
x(k) +

[
bc

bpdc

]
r(k)

y(k) =
[
0T cTp

]
x(k)

Suppose that the state x(k) of the system is known at t = tk: x(k) is known. We need to find xp(tk + τ) for all
τ ∈ [0, h), where h is the sampling period. Then, we can use it to compute yp(tk + τ): the value of the output between
sampling time instants. Recall that the plant input up(t) remains constant during the sampling interval: up(t) = up(tk)
for t ∈ [tk, tk+1):

xp(tk + τ) = eApτxp(tk) +

(∫ τ

0

eApsbpds

)
up(tk)

Â(τ) ≜ eApτ

b̂(τ) ≜
∫ τ

0

eApsbpds

=⇒ xp(tk + τ) = Â(τ)xp(tk) + b̂(τ)up(tk)

= Â(τ)xp(tk) + b̂(τ)
{
cTc xc(tk) + dc

(
r(tk)− cTp x

T
p (tk)

)}
=
(
Â(τ)− b̂(τ)dcc

T
p

)
xp(tk) +

(
b̂(τ)cTc

)
xc(tk) +

(
b̂(τ)dc

)
r(tk)

yp(tk + τ) = cTp

(
Â(τ)− b̂(τ)dcc

T
p

)
xp(tk) + cTp

(
b̂(τ)cTc

)
xc(tk) + cTp

(
b̂(τ)dc

)
r(tk)
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that the state x(tk) =

[
xc(tk)
xp(tk)

]
is known, the right hand side of the last relation is fully available and therefore

yp(tk + τ) is computable for all τ ∈ [0, h)

Figure 9: Example
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Chapter 5

Problem 5.1

The distribution function of x matches that of a Gaussian random vector, therefore x is a Gaussian random variable;

x ∼ N (0, Pxx), where Pxx =

[
1 1/2
1/2 1

]
. Let z ≜ x1 = Hx =

[
1 0

]
x. Since z is obtained by performing a linear trans-

formation on x, it is also a Gaussian random variable; z ∼ N (0, Pzz) where Pzz = HPxxH
T =

[
1 0

] [ 1 1/2
1/2 1

] [
1
0

]
= 1.

In fact, x and z are jointly Gaussian, in other words,
[
x
z

]
is a Gaussian RV because it is a linear transformation of x:

[
x
z

]
=

[
I
H

]
x = Ax

We can now obtain the covariance matrix of
[
x
z

]
as

[
Pxx Pxz

Pzx Pzz

]
= APxxA

T =

[
I
H

]
Pxx

[
I HT

]
=

[
Pxx HPxx

PxxH
T HPxxH

T

]
Notice that x|z = ρ is also a Gaussian RV (see Section 3.10) whose mean and covariance matrix are given by (3-112a)
and (3-112b):

mx|z(ρ) = mx + PxzP
−1
zz (ρ−mz) = 0 +

[
1
1/2

]
(1)(ρ− 0) = ρ

[
1
1/2

]
Px|z = Pxx − PxzP

−1
zz Pzx =

[
1 1/2
1/2 1

]
−
[
1
1/2

]
(1)
[
1 1/2

]
=

[
0 0
0 3/4

]

As such, x|z = ρ ∼ N
([

ρ
ρ/2

]
,

[
0 0
0 3/4

])
and for the particular measured value of ρ = 1, x|z = 1 ∼ N

([
1
1/2

]
,

[
0 0
0 3/4

])
which is consistent with intuition: Since x1 = z is known, there are no uncertainties in x1 direction and thus Px|z
becomes positive semidefinite and x|z = ρ becomes a degenerate Gaussian RV (the joint distribution function collapses
in x1 direction).

Figure 10: Covariance ellipse of x prior and after the measurement
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Problem 5.2
Since A is symmetric, A−1 is also a symmetric matrix. As a result, FT = GT .

AA−1 = I ⇒
[
P−1 HT

H −R

] [
D F
GT E

]
=

[
I 0
0 I

]
P−1D +HTGT = I (1)

P−1F +HTE = 0 =⇒ F = −PHTE =⇒ F = PHT (HPHT +R)−1 (2)

HD −RGT = 0 =⇒ GT = R−1HD (3)
HF −RE = I (4)

(4) : using(2), −HPHTE −RE = I =⇒ E = −(HPHT +R)−1

(1) : using(3), P−1D +HTR−1HD = I =⇒ D = (P−1 +HTR−1H)−1

To obtain the expanded form of D, we use (1), (2), (3) and the fact that FT = GT :

P−1D = I −HTGT =⇒ D = P − PHTGT =⇒ D = P − PHT (HPHT +R)−1HP

=⇒ (P−1 +HTR−1H)−1 = P − PHT (HPHT +R)−1HP
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Problem 5.3
First, we prove (5− 29): Post-multiply (5− 28) by HTR−1 to obtain

[P−1 +HTR−1H]−1HTR−1 = PHTR−1 − PHT [HPHT +R]−1HPHTR−1

= PHT
{
R−1 −

[
HPHT +R

]−1
HPHTR−1

}
(*)

We now show that the term is the curly braces equals [HPHT +R]−1:

I = [HPHT +R]−1[HPHT +R] =⇒ R−1 = [HPHT +R]−1[HPHTR−1 + I]

=⇒ R−1 = [HPHT +R]−1 + [HPHT +R]−1HPHTR−1

=⇒ R−1 − [HPHT +R]−1HPHTR−1 = [HPHT +R]−1 (**)
(*)−−→
(**)

[P−1 +HTR−1H]−1HTR−1 = PHT [HPHT +R]−1

To prove (5−30), Squeeze (5−28) by H(·)HT (to simply notation, let △ ≜ [P−1+HTR−1H], and □ ≜ [HPHT +R]):

H△−1HT = HPHT −HPHT□−1HPHT

= HPHT {I −□−1HPHT }
= HPHT□−1R (use identity(**))

We show that HPHT□−1R = R−R□−1R:

□□−1 = I =⇒ □□−1R = R =⇒ (HPHT +R)□−1R = R

=⇒ HPHT□−1R+R□−1R = R

=⇒ HPHT□−1R = R−R□−1R. (***)

We have now established H△−1HT = R−R□−1R:

=⇒ H[P−1 +HTR−1H]−1HT = R−R[HPHT +R]−1R
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Problem 5.4
A First, an explicit formula for K is obtained. Using the notation introduced in the previous problem and preforming
the matrix multiplication to obtain the (2, 1) entry of P ∗:

HP− = □KT =⇒ KT = □−1HP−

We are only required to establish P− = P+ + P−HTKT which is the equation that corresponds to the (1,1) entry of
P+. Substituting K:

P+ = P− − P−HT□−1HP− (5-28)
==== △−1

which does indeed match (5-32). As a consequence

|P ∗| = |P+||HP−HT +R| (⋆)

B [
X1 X2

XT
2 X3

] [
I −X−1

1 X2

I

] [
X−1

1

O−1

] [
I

−XT
2 X

−1
1 I

]
=

[
X1 X2

XT
2 X3

] [
X−1

1 −X−1
1 X2O

−1

O−1

] [
I

−XT
2 X

−1
1 I

]
=

[
X1 X2

XT
2 X3

] [
X−1

1 +X−1
1 X2O

−1XT
2 X

−1
1 −X−1

1 X2O
−1

−O−1XT
2 X

−1
1 O−1

]
=

[
I 0
0 I

]

Let A ≜

[
X1 X2

XT
2 X3

]
, then

A−1 =

[
I −X−1

1 X2

I

] [
X−1

1

O−1

] [
I

−XT
2 X

−1
1 I

]
This implies that

|A−1| = |X−1
1 ||O−1| =⇒ |A| = |X1||X3 −XT

2 X
−1
1 X2|

Now, let P ∗ = A:

|P ∗| = |P−|

∣∣∣∣∣∣HP−HT +R−HP− (P−)−1P−︸ ︷︷ ︸
=I

HT

∣∣∣∣∣∣ = |P−||R| (⋆⋆)

C
(∗)−−→
(∗∗)

|P ∗| = |P−||R| = |P+|
∣∣HP−HT +R

∣∣ =⇒ |HP−HT +R|1/2

|P−|1/2|R|1/2
=

1

|P+|1/2
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Problem 5.6
I am pretty sure this has a simpler solution, but here we are. We adopt the notation y = ⟨x1, x2, · · · xN ⟩ to indicate that
y is an affine transformation of RVs x1, x2, · · · xN : y = A1x1+A2x2+· · ·ANxN+b where Ais are deterministic real-valued
matrices and b is a deterministic real-valued vector. If {x1, x2, · · · xN} are jointly Gaussian and y = ⟨x1, x2, · · · xN ⟩,
then {y, xj1 , xj2 , · · · xjn} are also jointly Gaussian for any choices of ji ∈ {1, 2, · · · , N} and any n ≤ N . In other words,

r =


y
xj1
...

xjn


is a Gaussian RV. This is because r can be expressed as an affine transformation of col(x1, x2, · · · xN ) which is assumed

to be Gaussian. As an example, let y = ⟨x1, x2, x3⟩ where

x1x2
x3

 is Gaussian. Then r =

 y
x1
x3

 is also Gaussian because

 y
x1
x3

 =

A1 A2 A3

I 0 0
0 0 I

x1x2
x3

+

b0
0


We now return to the problem. Proof is by induction. We first show that {x̂(t+0 ), x(t0)} are jointly Gaussian.

x̂(t+0 ) = x̂0 +K(t0){z(t0)−H(t0)x̂0}
= x̂0 +K(t0){H(t0)x(t0) + v(t0)−H(t0)x̂0}
= {K(t0)H(t0)} x(t0) + K(t0) v(t0) + {x̂0 −K(t0)H(t0)x̂0}
= A1 x(t0) + A2 v(t0) + b

As a result, x̂(t+0 ) = ⟨x(t0), v(t0)⟩. Recall that x̂0 is a real-valued deterministic vector used as the initial estimate of
the state process at t0 which is available at the beginning of the filtering operation. By assumption, the measurement
noise process v(·, ·) is independent of x(t0) which implies that {x(t0), v(t0)} are independent RVs and therefore are
jointly Gaussian. We can now conclude {x̂(t+0 ), x(t0)} are jointly Gaussian RVs.

Let us now assume that {x̂(t+i−1), x(ti−1)} are jointly Gaussian. We will show that {x̂(t+i ), x(ti)} must be jointly
Gaussian. By similar expansions used previously it is readily shown that x̂(t+i ) = ⟨x̂(t−i ), x(ti), v(ti)⟩. Realize
that x̂(t−i ) = Φ(ti, ti−1)x̂(t

+
i−1) + ud(ti−1) ⇒ x̂(t−i ) = ⟨x̂(t+i−1)⟩ (ud(·) is a deterministic signal). Also, x(ti) =

Φ(ti, ti−1)x(ti−1) +wd(ti−1) + ud(ti−1)⇒ x(ti) = ⟨x(ti−1),wd(ti−1)⟩ (see 4-122). Combining these results yields

x̂(t+i ) = ⟨x̂(t
+
i−1), x(ti−1),wd(ti−1), v(ti)⟩

Recall that x̂(t+i−1) = f(Z(ti−1)); once the value of RV Z(ti−1) is realized (the entire measurement history up to time
ti−1 becomes available), we can proceed with the filtering algorithm to sequentially obtain state estimates up until
t = ti−1. In other words, the value of x̂(t+i−1) also becomes available as a real-valued vector x̂(ti−1). Furthermore,

1. v(ti) is independent of wd(ti−1): v(·, ·) and w(·, ·) are independent processes

2. v(ti) is independent of x(ti−1): recall that (see problem 4-4)

x(ti−1) = Φ(ti−1, t0)x(t0)

+

i−1∑
k=1

Φ(ti−1, tk)Gd(tk−1)wd(tk−1)

+

i−1∑
k=1

Φ(ti−1, tk)Bd(tk−1)ud(tk−1)

=⇒ x(ti−1) = f (x(t0),wd(t0), · · ·wd(ti−2)) (⋆)

This shows that x(ti−1) is completely determined by x(t0) and wd(t0), · · · ,wd(ti−2), which are independent of
v(ti). As a result, v(ti) must be independent of any functions of x(t0),wd(t0), · · · ,wd(ti−2). In particular, it
must independent of x(ti−1).
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3. wd(ti−1) is independent of x(ti−1):

Equation (⋆) shows that x(ti−1) is determined by x(t0) and wd(t0), · · · ,wd(ti−2), which are independent of
wd(ti−1). As a result, wd(ti−1) must be independent of any functions of x(t0),wd(t0), · · · ,wd(ti−2). In particular,
it must independent of x(ti−1). This is also intuitively true: wd(ti−1) ≜

∫ ti
ti−1

Φ(ti, τ)G(τ)dβ(τ) is the resultant
effect of the noise process exerted on the system during the time interval [ti−1, ti]; it is happening after ti−1.

4. Both wd(ti−1) and v(ti) are independent of Z(ti−1) (and therefore any function of it):

Z(ti−1) =

 z(t0)
...

z(ti−1)

 =

 H(t0)x(t0) + v(t0)
...

H(ti−1)x(ti−1) + v(ti−1)

 = F (x(t0), · · · , x(ti−1); v(t0), · · · , v(ti−1))

We have already shown that v(ti) is independent of x(tk) for 0 ≤ k ≤ i− 1 (you can simply extend the argument
made in part 2). Coupling this with the fact that v(ti) is a white process implies that v(ti) is independent of
Z(ti−1). Independence of wd(ti−1) and x(tk) for 0 ≤ k ≤ i− 1 was previously proved. This, along with the fact
that v(·, ·) and w(·, ·) are independent processes implies that wd(ti−1) is independent of Z(ti−1).

These, plus the induction assumption ({x̂(t+i−1), x(ti−1)} being jointly Gaussian) are enough to conclude that
{ x̂(t+i−1)︸ ︷︷ ︸
f(Z(ti−1))

, x(ti−1),wd(ti−1), v(ti)} are jointly Gaussian.

A Quick Note to Prove the Previous Statement

{a,b} are jointly Gaussian. c is Gaussian and independent of both a and b. Show that

ab
c

 is Gaussian.

We show that c is independent of m =

[
a
b

]
.

fm|c(ζ|ξ) = fa,b|c(ζ1, ζ2|ξ) = fa|b,c(ζ1|ζ2, ξ) · fb|c(ζ2|ξ) = fa|b(ζ1, ζ2) · fb(ζ2) = fa,b(ζ1, ζ2) = fm(ζ)

Therefore, c and m are independent Gaussian RVs. Thus
[
m
c

]
=

ab
c

 is Gaussian.

Now, consider
[
x̂(t+i )
x(ti)

]
:

[
x̂(t+i )
x(ti)

]
=

[
x̂(t+i )

Φ(ti, ti−1)x(ti−1) +wd(ti−1) + ud(ti−1)

]
=

[
I 0 0
0 Φ(ti, ti−1) I

] x̂(t+i )
x(ti−1)
wd(ti−1)

+

[
0

ud(ti−1)

]

But

 x̂(t+i )
x(ti−1)
wd(ti−1)

 is Gaussian; this is because x̂(t+i ) = ⟨x̂(t
+
i−1), x(ti−1),wd(ti−1), v(ti)⟩ and it was previously shown that

{x̂(t+i−1), x(ti−1),wd(ti−1), v(ti)} are jointly Gaussian. This implies that
[
x̂(t+i )
x(ti)

]
= T

 x̂(t+i )
x(ti−1)
wd(ti−1)

+b is a Gaussian RV

and the proof is complete.

The next part of the problem is easy to show. Note that x̂(t+i ) = f(Z(ti)). As such, x̂(t+i )|Z(ti) = Zi is the deterministic
real-valued vector x̂(t+i ):

E
[
x(ti)x̂(t

+
i )

T
∣∣ Z(ti) = Zi

]
= E[ x(ti) | Z(ti) = Zi ]︸ ︷︷ ︸

x̂(t+i ) by definition

x̂(t+i )
T = x̂(t+i )x̂(t

+
i )

T
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Problem 5.8
Define the voltage of capacitors as state variables: x1 ≜ VA, x2 ≜ VB :

ẋ1 =
1

c1
i2

ẋ2 =
1

c2
(i1 − i2)

The measurement equation reads y = x2.

Figure 11: Circuit diagram

Circuit equations are:

VE + u− r1i1 = VA = x1 ⇒ i1 =
1

r1
u− 1

r1
x1

VA − r2(i1 − i2) = VB ⇒ x1 − r2(i1 − i2) = x2 ⇒ i1 − i2 =
1

r2
(x1 − x2)

The state-space model of the system is obtained as:

ẋ1 = − 1

c1

(
1

r1
+

1

r2

)
x1 +

1

c1r2
x2 +

1

c1r1
u

ẋ2 =
1

c2r2
x1 −

1

c2r2
x2

y = x2

Substituting given values for the parameters (r1 = r2 = c1 = c2 = 1) and assuming a WGN at the input and also in
the measurement:

ẋ =

[
−2 1
1 −1

]
x+

[
1
0

]
w

y =
[

0 1
]
x+ v

As specified in the problem description, the system starts up with no charge in the capacitors and thus the voltages

across both capacitors are initially zero. We can now setup the filtering algorithm by identifying F (t) =

[
−2 1
1 −1

]
,

B(t) ≡ 0, G(t) =

[
1
0

]
, H(ti) =

[
0 1

]
, Q(t) = 2, x̂0 =

[
0
0

]
, P0 = ϵI.

Since the system is time-invariant and the sampling is uniform (Ts = ∆t = 1
2 ), we can readily compute Fd ≜ Φ(ti+1, ti)

as
Φ(ti+1, ti) = eF (ti+1−ti) = eFTs =

[
0.4238 0.2487
0.2487 0.6725

]
Furthermore, since noise processes are stationary,

Qd ≜
∫ ti

ti−1

Φ(ti, τ)G(τ)Q(τ)GT (τ)ΦT (ti, τ)dτ =

∫ Ts

0

eFσGQGT eF
Tσdσ =

[
0.4561 0.0917
0.0917 0.0299

]
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Part a)

In the case of perfect measurements (R(ti) ≡ 0), for the filtering algorithm to run smoothly without any numerical
difficulties, it is sufficient (as suggested in section 5.10) that P0 > 0 and Qd > 0. We may chose any (small; since we
know that the system is initially at rest) positive value for ϵ in P0 = ϵI, for P0 > 0 to be satisfied.

P (t−i ) = FdP (t+i−1)F
T
d +Qd (Time Update Equations)

P (t+i ) = P (t−i )− P (t−i )H
T
[
HP (t−i )H

T
]−1

HP (t−i ) (Measurement Update Equations)

Running these recursive equations for two seconds over the uniform time-grid {0, 0.5, 1, 1.5, 2} with initial conditions
P (t−0 ) = P (0−) = P0 = I yields

P (0+) =

[
1 0
0 0

]
, P (0.5+) =

[
0.2121 0

0 0

]
, P (1+) =

[
0.1915 0

0 0

]
, P (1.5+) =

[
0.1904 0

0 0

]
, P (2+) =

[
0.1903 0

0 0

]
From this point onward (t ≥ 2) steady-state condition is essentially reached. Since the measurement of x2 is perfect,
the uncertainty in the estimate of x2 is identically zero for all times. Also, the steady-state value for the Kalman gain
is obtained as KT

∞ =
[
2.683 1

]
. The following is the filtering of a sample process:

Figure 12: Estimation of the voltage across c1 (x̂1) by the perfect measurement of the c2 voltage

(1, 1)-entries of P (t+i ) are the variance of the error in the estimate of x1.

Part b)

We now assume that the measurement is noisy (R(ti) = 0.2) and set up covariance update equations as:

P (t−i ) = FdP (t+i−1)F
T
d +Qd (Time Update Equations)

P (t+i ) = P (t−i )− P (t−i )H
T
[
HP (t−i )H

T +R
]−1

HP (t−i ) (Measurement Update Equations)
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Covariance matrices are obtained as:

P (0.0+) =

[
1.0000 0.0000
0.0000 0.1667

]
P (0.5+) =

[
0.5081 0.1226
0.1226 0.0910

]
P (1.0+) =

[
0.4588 0.1182
0.1182 0.0835

]

P (1.5+) =

[
0.4552 0.1162
0.1162 0.0808

]
P (2.0+) =

[
0.4550 0.1161
0.1161 0.0800

]
Beyond this point (t ≥ 2) steady-state condition is essentially reached:

Figure 13: Error variances in the estimates for x1 and x2

As expected, the variance of the error in the estimate of x1 is higher in this case (0.455 compared to 0.1903). Also, the
steady-state value for the Kalman gain is obtained as KT

∞ =
[
0.58 0.4

]
which is lower than the previous case (not

counting too much on the observed values due to noisy measurements).

Figure 14: Estimation of the voltage across c1 (x̂1) by the noisy measurement of the c2 voltage
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Problem 5.9
State-space equations of the given dynamical system are obtained by defining the state variables x1 ≜ y and x2 ≜ ẏ,
and the state vector x ≜ [x1 x2]

T . Then,

ẋ1 = ẏ = x2

ẋ2 = ÿ = −y = −x1

Thus, the state equation is:

ẋ =

[
ẋ1
ẋ2

]
=

[
0 1
−1 0

]
x

The initial state is given as x(t0) ∼ N (x̂0, P0), where:

x̂0 =

[
0
0

]
, P0 =

[
4 1
1 2

]
Appending the measurement equation, the state-space model is obtained as:

ẋ(t) =

[
0 1
−1 0

]
x(t)

z(ti) =
[
1 0

]
x(ti) + v(ti)

The optimal filtering algorithms can now be set up by identifying: F (t) =

[
0 1
−1 0

]
, B(t) ≡ 0, G(t) ≡ 0, H(ti) =

[
1 0

]
,

Q(t) ≡ 0 (process noise covariance), R(ti) ≡ 1 (measurement noise variance). Since F is constant, we can compute
the state transition matrix Φ(ti, ti−1):

Φ(ti, ti−1) = eF (ti−ti−1)

Let ∆ti = ti − ti−1. Then,

Φ(∆ti) = eF∆ti =

[
cos(∆ti) sin(∆ti)
− sin(∆ti) cos(∆ti)

]
Let us for simplicity assume a uniform sampling of the process, so ∆ti = Ts (a constant sampling period). Then
Φ ≜ eFTs becomes a constant matrix. The time update equations are:

x̂(t−i ) = Φx̂(t+i−1)

P (t−i ) = ΦP (t+i−1)Φ
T

The measurement update equations are:

K(ti) = P (t−i )H
T (HP (t−i )H

T +R)−1

x̂(t+i ) = x̂(t−i ) +K(ti)[z(ti)−Hx̂(t−i )]

P (t+i ) = (I −K(ti)H)P (t−i )

Specifically, since H =
[
1 0

]
and R = 1:

HP (t−i )H
T +R = P11(t

−
i ) + 1

K(ti) =
1

P11(t
−
i ) + 1

[
P11(t

−
i )

P21(t
−
i )

]
To determine an explicit relation for the ẏ(ti) estimator (which is x̂2(t

+
i )), we can write out each component of the

previous vector relations:

x̂2(t
+
i ) = x̂2(t

−
i ) +

P21(t
−
i )

P11(t
−
i ) + 1

[z(ti)− x̂1(t
−
i )]

Some remarks are in order:

• The given dynamical system represents an undamped oscillator. The state vector rotates around the origin with
unit speed (angular frequency ω = 1).
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• We are making noisy measurements of the position of the oscillator (x1) in the hope that we can estimate its
velocity (x2) in the long run.

• We can interpret this optimality (among other interpretations) as the most likely value of the velocity of the
system given the history of noisy position measurements.

• Notice that Φ is in fact a rotation matrix; Φx̂(t+i−1) rotates the estimate x̂(t+i−1) by Ts radians in the clockwise
direction (due to the −sin(∆ti) term in the Φ21 position, this corresponds to the system dynamics ẋ2 = −x1).

• Furthermore, ΦP (t+i−1)Φ
T is a similarity transformation (recall that rotation matrices are orthonormal: ΦT =

Φ−1). This also implies that in periods without measurement, the uncertainty in the state of the system remains
constant (recall that eigenvalues are similarity-invariant).

Now, if sampling is performed every Ts = 2kπ seconds (for integer k), we are essentially making observations of the x1
component of a "fixed" state vector in the state space. In this case, Ts = 2kπ ⇒ Φ = I (identity matrix, meaning a
complete rotation and back to the same spot). Then, the time update for covariance becomes:

P (t−i ) = ΦP (t+i−1)Φ
T = IP (t+i−1)I

T = P (t+i−1)

The measurement update for the inverse covariance (Information Filter form) is:

P−1(t+i ) = P−1(t−i ) +HTR−1H

With H =
[
1 0

]
and R = 1, HTR−1H =

[
1
0

]
(1)
[
1 0

]
=

[
1 0
0 0

]
. So,

P−1(t+i ) = P−1(t+i−1) +

[
1 0
0 0

]
Solving this recursive relation, yields P−1(t+k ):

P−1(t+k ) = P−1(t0) + k

[
1 0
0 0

]
As k → +∞:

P11(t
+
k )→ 0

P22(t
+
k ) remains intact (i.e., P22(t0))

This means that we can estimate the position x1 with increasing accuracy, but our knowledge of the velocity x2 does
not improve under these specific sampling conditions (Ts = 2kπ).

x1

x
2

State Space

x(t)
86% Con-dence Regionbx(ti)

Figure 15: Estimating the states of the harmonic oscillator: State-Space view
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Q = 0 | R = 1 | Ts = 0.02
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Figure 16: Estimating the states of the harmonic oscillator
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Figure 17: Variance of the error in the estimates of position and velocity

41



Problem 5.12
State space model of the given system in controllable canonical form is given by:

G(s) =
0.3s+ 0.003

s2 + 0.006s+ 0.003

a =

[
a0
a1

]
=

[
0.003
0.006

]

c =

[
c0
c1

]
=

[
0.003
0.3

]
A =

 0 I

−aT

 =

[
0 1

−0.003 −0.006

]

b =

[
0
1

]
cT =

[
0.003 0.3

]

c1 c0

a1 a0

Let x̃ =
[
x̃1 x̃2

]T be the state vector for the process dynamics, then the system model is given by

˙̃x(t) = Ax̃(t) + bhc(t)

h(t) = cT x̃(t)

In response to a step reference command (hc(s) =
α
s ), asymptotic tracking is achieved (h(∞) = lims→0 s

α
sG(s) = α),

however, since the poles are located at {−0.003±0.0547j} the response signal exhibits a slowly damped (ζ ≈ 0.055≪ 1)
and oscillatory behavior with a long settling time (Ts ≈ 1870s).

The input signal hc(t) is a stochastic process hc(t) comprised of two components: a random bias hc0, and a zero-mean
white Gaussian noise process δhc(t). The random bias hc0 is modeled as the output of an integrator with no inputs:{

ḣc0(t) = 0

hc0(t0) ∼ N (µ, P )

Figure 18: Input signal

With this input, the stochastic model is given by

˙̃x(t) = Ax̃(t) + bhc0(t) + bδhc(t)

h(t) = cT x̃(t)

We define the augmented state vector x ≜

[
x̃
hc0

]
. x satisfies the following stochastic differential equation:

ẋ(t) =

[
˙̃x

ḣc0

]
=

[
Ax̃+ bhc0 + bδhc

0

]
=

[
A b
0 0

] [
x̃
hc0

]
+

[
b
0

]
δhc(t) = Fx(t) +Gw(t)

The measurement equation is

z(t) = hm(t) =
[
cT 0

] [ x̃
hc0

]
+ δm(t) = Hx(t) + v(t)
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As such, the augmented system model can be compactly expressed as

ẋ(t) = Fx(t) +Gw(t)

z(t) = Hx(t) + v(t)

With F =

 0 1 0
−0.003 −0.006 1

0 0 0

 , G =

01
0

 , H =
[
0.003 0.3 0

]
, Q(t) ≡ 400 , Rc(t) ≡ 900, the continuous-time

filtering equations can now be set up:

Ṗ (t) = FP (t) + P (t)FT +GQGT − P (t)HTR−1
c HP (t)

˙̂x(t) = F x̂(t) + P (t)HTR−1
c [z(t)−Hx̂(t)]

ĥ(t) = Hx̂(t)

These equations are solved using the initial conditions:

x̂(t0) =

[
x̃0

10 000

]
P (t0) =

[
P̃0 0
0 250 000

]
where x̃0 is an initial estimate of the state process with its corresponding confidence level expressed through P̃0 (it
can be related to your initial estimate of the altitude). x̂(t) is the optimal estimate of the state process x(t) at time
t. The optimal (also minimum variance) estimate of the altitude h(t) can be obtained by evaluating ĥ(t) = Hx̂(t) at
each desired point in time.

With discrete-time measurements, the state model is

ẋ(t) = Fx(t) +Gw(t)

z(ti) = Hx(ti) + v(ti)

Since the system is time-invariant and the sampling is uniform (Ts = ∆t = 1), we can readily compute Fd ≜ Φ(ti+1, ti)
as

Φ(ti+1, ti) = eF (ti+1−ti) = eFTs =

 0.9985 0.9965 0.4989
−0.0030 0.9925 0.9965

0 0 1.0000


Furthermore, since noise processes are stationary,

Qd ≜
∫ ti

ti−1

Φ(ti, τ)G(τ)Q(τ)GT (τ)ΦT (ti, τ)dτ =

∫ Ts

0

eFσGQGT eF
Tσdσ =

132.6554 198.6055 0
198.6055 397.2128 0

0 0 0


With that, the filtering algorithm can be set up:1

P (t−i ) = FdP (t+i−1)F
T
d +Qd (Time Update Equations)

K(ti) = P (t−i )H
T
[
HP (t−i )H

T +R(ti)
]−1

P (t+i ) = P (t−i )−K(ti)HP (t−i ) (Measurement Update Equations)

x̂(t−i ) = Fd x̂(t+i−1) (Time Update Equations)

x̂(t+i ) = x̂(t−i ) +K(ti)
[
zi −Hx̂(t−i )

]
(Measurement Update Equations)

ĥ(ti) = Hx̂(ti) (Output Estimate)

Below is a simulation of the system with the following parameters:
1Unlike the convention used in the book, we assume that the first measurement is taken at t = t0. This is also the time point at which an
estimate of the state process (x̂0, P0) is available. As such, the filtering algorithm begins by evaluation of measurement update equations.
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- True value of the altitude at time t0 (unknown to the observer) is h(t0) = 6 000 ft

- Initial Estimate (at time t0) of the altitude is ĥ(t0) = 2 000 ft with standard deviation of 1 000 ft equivalent to
a variance of 1 000 000 ft2

- True value of the commanded altitude (unknown to observer) is hc(t0) = 12 000 ft

- Initial Estimate (at time t0) of the commanded altitude is ĥc(t0) = 10 000 ft with standard deviation of 500 ft
equivalent to a variance of 250 000 ft2

The filtering algorithm begins with the following initial estimates over the uniform time-grid {0, 1, 2, · · · , 1 000}.

x̂(t0) =

 0
6 666.7
10 000

 =⇒ ĥ(t0) = Hx̂(t0) = 2 000

P (t0) =

1 000 000 0 0
0 11 110 000 0
0 0 250 000

 =⇒ Ph(t0) = HP (t0)H
T = 1000 000

Figure 19: System Simulation: State Estimates

Error variance in the commanded altitude estimate reduces to a value of σ2
hc

= 1.2 ft2 at the end of simulation time. It
means that it is very likely that the true value of the commanded altitude is within just ±4 feet of the estimate. You
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can also observe the rapid convergence of ĥc(t) to hc0 in the figure. Likewise, the terminal value of the error variance
in the altitude estimate is σ2

h = 160 ft2. It means that we are very confident that the true value of the altitude lies
within an error bound of ±40 feet of the estimate.

Figure 20: System Simulation: Error Variance
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Problem 5.13
The given dynamics model for the position variable is assumed to be valid over the uniform2 time-grid {0, 1, 2, · · · , 10}.
Let us suppose that the first measurement is taken at t1 (0 ≤ t1 ≤ 8) and the second measurement is taken at t2
(t1 < t2 ≤ 9) where t1, t2 ∈ Z+. Valid values for (t1, t2) satisfying these constraints are shown in the following figure:

0 1 2 3 4 5 6 7 8

t
1

0

1

2

3

4

5

6

7

8

9

t
2

Figure 21: Valid time points for the two measurements

The problem is well-suited for applying Kalman filter as the optimal estimator. Since the state variable is scalar, the
error covariance (variance) time update equation is given by:

P (t−i ) = FdP (t+i−1)F
T
d +Qd

=⇒ p(t−i ) = p(t+i−1) + q (Time Update Equations)

Likewise, measurement update equation for error covariance (variance) is

P (t+i ) = P (t−i )− P (t−i )H
T
[
HP (t−i )H

T +R
]−1

HP (t−i )

=⇒ p(t+i ) = p(t−i )−
p(t−i )

2

p(t−i ) + r

=⇒ p(t+i ) =
p(t−i )r

p(t−i ) + r
(Measurement Update Equations)

Error covariance of the optimal estimate at tf = 10 is obtained as follows:

1. Propagate error covariance from t0 = 0 to t1:

p(t−1 ) = p0 + t1q

2For non-uniform time-grid, Qd(ti) ≜ E
[
w2

d(ti)
]

is expected to be time-varying to account for the accumulated effect of the continuous-time
noise process on the system over [ti, ti+1] (see Eq. 4-127b). Constancy of Qd(ti) implies (logically) that the given discrete-time model is
only valid over a uniform mesh; ti+1 − ti = T = cte.
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2. Make a measurement at t1 and update the covariance:

p(t+1 ) =
p(t−1 )r

p(t−1 ) + r

3. Propagate error covariance from t1 to t2:

p(t−2 ) = p(t+1 ) + (t2 − t1)q

4. Make a measurement at t2 and update the covariance:

p(t+2 ) =
p(t−2 )r

p(t−2 ) + r

5. Finally, propagate error covariance from t2 to tf = 10:

p(tf ) = p(t+2 ) + (tf − t2)q

By combining these steps, we can obtain a closed form formula for p(tf ) as a function of t1 and t2:

p(tf ) =
(p0 + t1q)r

2 + (t2 − t1)qr(p0 + t1q + r)

(p0 + t1q)r + ((t2 − t1)q + r)(p0 + t1q + r)
+ (tf − t2)q (⋆)

We can now vary (t1, t2) over the grid shown in figure 21 and compute the resulting values for the position error
variance at time tf = 10.

Figure 22: Steps 1-5 illustrated

Intuitively, making measurements closer to tf = 10 yields more precise results for the position estimate at t = tf .
If there is a time gap between t2 and tf , position estimate becomes more and more unreliable due to the constant
injection of noise into the system as we move from t2 to tf . This is also evident in covariance time update equation as
q is a non-zero forcing term in p(t−i ) = p(t+i−1) + q causing p(t) to increase over time.
We can rewrite Eq.(⋆) as

p(tf ) = r

{
1− r(p0 + t1q + r)

(p0 + t1q)r + ((t2 − t1)q + r)(p0 + t1q + r)

}
+ (tf − t2)q

From this equation, it is now readily observed that reducing (t2 − t1) and/or (tf − t2) lowers p(tf ).

Part a)
It is evident from Eq.(⋆) that scaling p0, q, and r equally, simply scales p(tf ) by the same factor. As such, we use
p0 = q = r = 1 ft2 for subsequent computations. Figure 23 is obtained by computing Eq.(⋆) over the time points
shown in figure 21. As expected, the least error variance is obtained by taking measurements at (t1, t2) = (8, 9). As
t2 becomes closer to the target time tf (fixing t1 and increasing t2), smaller values for p(tf ) are obtained. Also, as the
time difference between t1 and t2 is reduced (fixing t2 and increasing t1), more accurate estimate is obtained.
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Figure 23: p(tf ) over valid measurement time points (t1, t2)

Thus, the optimal rms terminal position error is
√

p(tf ) =
√
1.65E4 ft2 ≈ 128.6 ft.

Part (b) - (e)
We perform the same calculations under the condition that p(t−) ≤ (2.5 ft)2 = 6.25 ft2 must be satisfied prior to each
measurement.
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Figure 24: p(tf ) over valid measurement time points (t1, t2) under the given constraint
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Figure 25: p(tf ) over valid measurement time points (t1, t2) under the given constraint
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Problem 5.20
The small orbital deviations we wish to observe from the ground station are the state variables of a linear dynamical
system described by

ẋ(t) = Fx(t) +Bu(t)

where F =


0 1 0 0

2ω2 0 0 2r0ω
2

0 0 0 1
0 −2ω/r0 0 0

, and B =


0 0
1 0
0 0
0 1/r0

.

The state vector x(t) is the deviation signal x(t) =
[
δr(t) δṙ(t) δθ(t) δθ̇(t)

]T
from the nominal trajectory of the

object in a circular orbit: r∗(t) ≡ r0, ṙ
∗(t) ≡ 0, θ∗(t) = ωt, θ̇∗(t) = ω, u∗

t (t) = u∗
r(t) ≡ 0. We assume that the nominal

trajectory is known to the observer, allowing a measurement of an orbital variable to be converted into a measurement
of its deviation. For example, by obtaining a measurement of angle through θ(t) + v(t), we can simply define and
evaluate z(t) ≜ {θ(t) + v(t)}− θ∗(t) = {θ(t)− θ∗(t)}+ v(t) = δθ(t)+ v(t) = x3(t)+ v(t) which is a measurement of the
state variable x3(t).

Choosing H =
[
0 0 1 0

]
renders the system observable, meaning that, in the absence of dynamic driving noise

(Q ≡ 0), the estimated states will converge to the true states over time. This is demonstrated in the following
simulation.

Q=0 | R=1 | Ts=0.01
H=[0 0 1 0]
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Figure 26: Estimating deviation signals by observing θ(t).
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Choosing H =
[
1 0 0 0

]
results in a unobservable subsystem. Decomposing the system into observable/unobservable

components by applying a linear transformation to the state vector using

x̃ = Tx, T =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


produces the observability staircase form, which for the present systems takes a simple form. Realize that T is merely
a permutation matrix indicating that x3 is not observed in the output. Since x3 is not channeled into the output signal,
we cannot improve our estimate of it through observations.

Figure 27: The state variable x3 is not sensed by the output signal z.

It is therefore expected that the variance of the error in the estimate of x3 remains constant or grows over time. This
is also confirmed by the simulation results that follow. As shown in Fig. 29, x1, x2, and x4 are in the observable part
of the system and therefore are successfully recovered by the filtering process. However the uncertainty in the value
of x3 is not improved by the measurement process.
Choosing H =

[
1 0 0 0; 0 0 1 0

]
seems to accelerate the recovery process. Simulations indicate that the

magnitude of variances decays more rapidly (especially in the initial phase of the filtering) when both measurements
are incorporated into the filtering operation.

0 2 4 6 8 10
time

0

0.5

1

1.5

2

2.5

3

P 1
1

H = [0 0 1 0]

0 2 4 6 8 10
time

0

0.1

0.2

0.3

0.4

0.5

P 1
1

H = [1 0 0 0;0 0 1 0]

Figure 28: Variance of the error in the estimate of x1 for two different observation models.
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Case: H=[1 0 0 0]
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Figure 29: Variance of the error in the estimate of the system state variables when x1 is used for the measurement
process.
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