Proposed Errata

Griffiths, D. F., and Desmond J. Higham. Numerical Methods for Ordinary Differential Equations: Initial Value Problems. London: Springer, 2010.

Compiled by Sajjad K. Monfared

- Negative line numbers are counted from the bottom of the page (excluding the footer).

Chapter 2		
P.28	Line 16	At the end of the line, replace $e^{ \lambda ,t_f}$ with $e^{ \lambda t_f}$ (remove the comma).
Chapter 3		
P.41	Ex. 3.11	In the last equation in this exercise, replace $g(t_n)$ with $g^{(p-1)}(t_n).$ (We are using successive derivatives of $g(t))$
Chapter 4		
P.47	Fig. 4.1	 Change the ylabel of the RHS figure from x_n to e_n. The legend of the RHS figure crosses the margins.
Chapter 5		
P.62	Mult.	 Line 5: "IVPsof" should read "IVPs of". Line 6: "IVPsor" should read "IVPs or".
P.70	Line 16	"LTEis" should read "LTE is".
Chapter 6		
P.66	Item 3	Remove the extra 's' in "Nyström method (1925): <u>s</u> "
P.94	Line 5	"if, and only if" part seems to be wrong. The result depends on the value of $\gamma:$
		$\begin{cases} -\frac{2}{1-\gamma^2} < \hat{h} < 0 & 0 < \gamma \le \frac{1}{\sqrt{2}} \\ \{\frac{-2}{1-\gamma^2} < \hat{h} < h_1^*\} \cup \{h_2^* < \hat{h} < 0\} & \frac{1}{\sqrt{2}} < \gamma < 1 \end{cases}$
		Where h_1^* and h_2^* are the two distinct roots of $R(\hat{h}).$ As we can see, in the second case, interval of absolute stability comprises of the union of two disjoint intervals. See FILE *.
Chapter 7		

Continued on next page

P.96	Mult.	\bullet Results of the numerical computations for u_2^\prime and v_2^\prime are incorrect. The correct numerical values are						
		$u_2' = -t_2 u_2 v_2 = -0.35$ $v_2' = -u_2^2 = -0.94$						
		• Son valu gray	ne of the n les are giv /.	umerical v en in the	values in ⁻ following	Fable (7.1) table. Up	are incorre odated cell	ect. The correct s are colored in
		n	$ t_n$	u_n	v_n	u'_n	v'_n	
		0	0	1.0000	2.0000	0	-1.0000	Initial data
		1	0.1000	1.0000	1.9000	-0.3497	-0.9438	Euler's Method
		2	0.2000	0.9715	1.8000	-0.1900	-1.0000	AB(2)
		3	0.3000	0.9282	1.7084	-0.4759	-0.8622	
Chapter 9								
P.131	Table 9.7	Coefficient b_2 for the RHS Butcher table is wrongly printed as $\frac{4}{3}$. The correct value is $\frac{2}{3}$.						
P.133	Ex. 9.7	4^{th} decimal place in Improved Euler method is not accurate: Replace $\underline{1.0940}00$ with $\underline{1.094}000.$ See FILE *.						
Chapter 10								
							Continu	ed on next page

Mult.

• The Butcher array for the improved Euler method must be corrected to:

0	0		
1	1	0	
	$\frac{1}{2}$	$\frac{1}{2}$	

• Subsequent computations for the first step (n = 0) must be corrected. Updated cells are colored in gray.

$$\begin{split} n &= 0: \quad t_0 = 0, \\ k_1 &= -t_0 u_0 v_0 = 0, \\ l_1 &= -u_0^2 = -1, \\ k_2 &= -(t_0 + h)(u_0 + hk_1)(v_0 + hl_1) = -0.19, \\ l_2 &= -(u_0 + hk_1)^2 = -1, \\ u_1 &= u_0 + \frac{h}{2}(k_1 + k_2) = 0.9905, \\ v_1 &= v_0 + \frac{h}{2}(l_1 + l_2) = 1.9, \\ t_1 &= 0.1. \end{split}$$

• The numerical values given in Table (10.2) are incorrect. The correct values are given in the following table. Updated cells are colored in gray.

n	t_n	$oldsymbol{k}_1$	$oldsymbol{k}_2$	$oldsymbol{x}_n = egin{bmatrix} u_n \ v_n \end{bmatrix}$	
0	0.0			1	
				2	Initial data
1	0.1	0.0000	-0.1900	0.9905	
		-1.0000	-1.0000	1.9000	
2	0.2	-0.1882	-0.3502	0.9636	
		-0.9811	-0.9442	1.8037	

Chapter 1	1	
P.154	Mult.	• At line 2, replace $\mathcal{O}(h_n^2)$ with $\mathcal{O}(h_n^3)$. • At line 5, replace the negative sign with a plus sign in the middle:
		$x'(t_{n+1}) = x'(t_n) + h_n x''(t_n) + \mathcal{O}(h_n^2)$
P.147	Footnote	C_{p+2} should read C_{p+1} .
P.149	Line 4	$ T_0 $ should read $ \hat{T}_1 $.
Chapter 1	2	

Continued on next page

P.166	Mult.	 At line 5, since 0 represents the zero vector, it is better to use a boldfaced 0: Replace f(x*) = 0 with f(x*) = 0. At line 7, since 0 represents the zero vector, it is better to use a boldfaced 0: Replace f(x*) = 0 with f(x*) = 0. 		
P.173	Item 4	Replace $1 < h < \frac{1}{2}(-1 + \sqrt{5}) \approx 0.62$ with $0 < h < \frac{1}{2}(-1 + \sqrt{5}) \approx 0.62$		
Chapter 13	}			
P.178	Line -1	The expression in parentheses which represents $y''(t)$ seems to be inaccurate. The complete expression for $y''(t)$ involves additional terms:		
		$\left(\frac{\mathrm{d}f}{\mathrm{d}y}(y(t))f(y(t)) + h^{2p}\frac{\mathrm{d}g}{\mathrm{d}y}(y(t))g(y(t))\right)$		
		$+h^p\left(rac{\mathrm{d}g}{\mathrm{d}y}(y(t))f(y(t))+rac{\mathrm{d}f}{\mathrm{d}y}(y(t))g(y(t)) ight) ight)$		
P.179	Line 7	The term $f(y(t_n))$ is missing in the given equation. It should be corrected to		
		$\widehat{T}_{n+1} = h^2 \left(g\left(y\left(t_n\right)\right) + \frac{1}{2} \frac{\mathrm{d}f}{\mathrm{d}y}\left(y\left(t_n\right)\right) f(y(t_n)) \right) + \mathcal{O}(h^3)$		
P.180	Line 9	It seems that $\mu < \lambda$ is always satisfied and the specified condition $1 - \frac{1}{2}\lambda h > 0$ is unnecessary. This is because:		
		$\mu < \lambda \iff \lambda(1 - \frac{1}{2}\lambda h) < \lambda \iff \lambda - \frac{1}{2}\lambda^2 h < \lambda \iff \lambda^2 h > 0,$		
		where the final inequality always holds.		
P.181	Ex. 13.2	• Equations (13.9) and (13.10) should be corrected to (remove the extra y inside the bracket and add a missing 2):		
		y'(t) = [1 - h(1 - 2y)](2y)(1 - y) (13.9)		
		y'(t) = [1 + h(1 - 2y)](2y)(1 - y) (13.10)		
		 At line -11, 0.5 < y < 1 should be replaced with 0 < y < 0.5. At Lines -11 and -8, the conditions y'(t) < y(1-y) and y'(t) > y(1-y) should be replaced with y'(t) < 2y(1 - y) and y'(t) > 2y(1 - y) respectively. This is because we are comparing y'(t) with f(y) which has a factor of 2. 		
P.186	Line -2	The term $\mathcal{O}(h^4)$ should be removed.		

P.187	Mult.	 At line 5, -¹/₂h² - x(t) should be replaced with -¹/₂h²x(t). At line 6, (¹/_{3!}A + B) should be replaced with (¹/_{3!}A - B). 	
		• At line 10, $\frac{1}{12} \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}$ should be replaced with $\frac{1}{12} \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$.	
		• In Eq.(13-24), $(1 + \frac{1}{12}h^2)$ should be replaced with $(1 - \frac{1}{12}h^2)$. See FILE *.	
P.188	Eq. 13.26	Use circumflex for the LTE associated with modified equation to maintain consistency throughout the whole chapter: Replace T_{n+2} with \hat{T}_{n+2} .	
P.189	Line 2	Use circumflex for the LTE associated with modified equation to maintain consistency throughout the whole chapter: Replace T_{n+2} with \hat{T}_{n+2} .	
P.191	Ex. 13.3	At the first line of this exercise, $\mathcal{O}(h^3)$ should be replaced with $\mathcal{O}(h^4).$	
Chapter 1	4		
P.203	Line -13	Remove the extra ')' in "(9.5))".	
Chapter 1	5		
P.210	Line -8	It may also be mentioned that a unit length is assumed for the rod.	
P.214	Line -9	The resulting matrix $\begin{bmatrix} 0 & 1+h^2 \cos q_n \\ -1-h^2 \cos q_n & 0 \end{bmatrix}$ is expected to match J for symplecticness, not the identity matrix.	
Chapter 1	6		
P.229	Line 1	It seems that the x-axis is being divided into bins rather than the y -axis.	
Bibliograp	hy		
P.264	Ref [55]	Remove the question mark in "P. Munz, I. Hudea, J. Imad, and R. J. Smith?".	